空氣污染與噪音類

以人工智慧 (AI) 優化粉煤燃燒 並改善 NO_x 及未燃炭

吴宗德*、郭子豪**、張耀斌***、黃溢銓****

摘 要

為因應空污減排、煤炭多元化及負載之變化,粉煤鍋爐面臨運轉偏離原始設計條件,導致鍋爐燃燒效率降低而增加煤炭用量、氦氧化物濃度增加使選擇性觸媒還原脫硝之噴氨量增加、飛灰未燃炭或燒失量增加影響循環經濟去化、鍋爐結渣破管衍生工安、可用率等問題。可透過人工智慧(AI)分析及調整操作參數優化燃燒過程來改善。優化目標係使爐膛溫度均勻分佈,則透過爐膛二維煙溫分佈線上測量系統來確認。本研究以前牆式粉煤汽電共生鍋爐(500公噸/小時)及低NO_x燃燒器為對象,於固定煤炭成分情況下,調整操作參數如磨煤機運轉、燃燒器風箱壓力、風門等以調整粉煤粒徑及空燃比設定。燃燒優化結果顯示未燃炭由4.9%降至0.86%,熱效率提升1.93%,CO濃度由6.83 ppm降至6.3 ppm。值得注意的是,臚膛中心的溫度由調整前913.7°C升高至935.3°C,但SCR 入口NO_x濃度僅由184.3 ppm上升至187.8 ppm,對NO_x幾無影響,推測NO_x主要由FuelNO_x主導(約占總NO_x的75%),透過降低一次風量可抑制FuelNO_x的生成。本研究證實透過監測和控制燃料和空氣流量分佈可以優化燃燒過程,在不影響NO_x下,降低未燃炭及提高熱效率。建議企業因煤源多樣化等需求導入高燃料比(固定炭)燃料,而有LOI增加之潛勢,可透過本研究成果協助將LOI降低至6%以下,促進飛灰於循環經濟利用的管道。

【關鍵字】粉煤燃燒、燃燒優化、人工智慧、氮氧化物、未燃炭

* 環興科技股份有限公司	工程師
** 環興科技股份有限公司	計畫主任
*** 台灣塑膠工業股份有限公司	仁武廠協理
**** 台塑企業總管理處	安衛環中心副總經理

一、前言

為因應美國 1990 年的《清潔空氣法修正案》,許多粉煤鍋爐改用低氦氧化物燃 燒器 (Low NO_x Burner) 來降低 NO_x 排放 (ECHNOLO, 1996),並改善飛灰未燃炭或燒 失量 (Loss on Ignition, LOI) 增加之副作用 (EPRI, 2001, Dong, 2010)。我國電力設施 空氣污染物排放標準 (2014) 中燃煤汽電共生 NO_x 標準 70 ppm 高於業者的環評承諾及 機組設計值。然而,近年業界推動超低排放 NO_x 濃度低於 30 ppm (台化公司,2018) 因而必須提高 LNB 及選擇性觸媒還原脫硝 (SCR) 之 De-NO_x 效率,使粉煤鍋爐運轉 偏離原始設計條件,難以兼顧燃燒效率、空污 (NO_x) 排放、飛灰 LOI 及工安 (結渣破 管),而有燃燒優化之需求。本研究透過文獻回顧與國內實廠測試,探討並驗證燃燒 優化做法及效果。

二、文獻回顧

2.1 燃燒重要參數

燃煤電力設施承受提高效率、降低污染 (NO_x)、降低飛灰 LOI、降低結渣破管等 多項壓力,同時滿足多項目標需要在爐膛內保持微妙平衡。圖1顯示燃燒關鍵參數與 過剩空氣(以空燃比表示)之關係(Widmer and Marquez, 2012, Lockwood, 2015),燃 燒最佳區 (optimum zone) 被定義最低可能的 O₂ 供應下,不完全燃燒指標 CO、LOI 最 低,為此需要向爐膛提供足夠的過剩空氣以實現煤的完全燃燒。然而,於此區域運轉 會增加與爐膛內還原條件相關的管道磨耗(tube wastage)的風險。因此,鍋爐通常在 舒適區(comfort zone)內運行,有略多的過剩空氣(及O₂)以兼顧完全燃燒和材料壽命, 然可能會以降低效率及增加 NO_x 排放為代價。因為空氣量增加會導致風機功耗增加且 煙氣排放熱損增加而降低效率,而 O₂ 對 NO_x 生成一般具正向關係。此外,手動過程 無法在長時間內始終保持在這個範圍內。實現這個目標的唯一方法是通過自動化來優 化鍋爐燃燒條件。(POWER, 2019)

圖1 關鍵燃燒參數與空燃比之關係 (Widmer and Marquez, 2012)

2.2 LNB 及潛在問題

傳統的燃煤燃燒器操作時多有15至20%的過剩空氣(相比於理論化學計量空氣), LNB 燃燒系統旨在降低主燃燒區氧氣,通常包含LNB 進行分段燃燒,並結合火上空 氣口 (Over Fire Air, OFA),如圖2,其原理如下:

LNB:操作原理涉及減少引入主燃燒區的空氣量,從而創造出富燃料、還原環境,並降低溫度,以抑制 NO_x 的生成。所需的用於完全燃燒的剩餘空氣則在主燃燒區之後 作為二次(、三次)添加。在這裡,溫度足夠低,也可抑制 NO_x 生成。

OFA:在使用 LNB 的情況下,如果 NO_x 排放超出所需水平,可能需要更深層次的分段燃燒,可通過鍋爐較高位置、LNB 上方的獨立口進一步引入所需的剩餘燃燒空氣,同樣在較低溫度下,從而抑制額外 NO_x 的產生。

LNB的潛在問題:在主燃燒區內減少空氣的LNB操作可能會導致經濟損失,因為LOI的含量增加,燃燒區的結垢增加,並加速腐蝕。LNB促進的延遲燃燒可能會導致較高的臚膛出口煙氣溫度(Furnace Exit Gas Temperature, FEGT)。為了抵消這些傾向,可以通過增加粉煤細度和燃燒優化等方式來降低LOI。

圖 2 低氮氧化物燃燒器 (LNB)(ECHNOLO, 1996)

2.3 增加粉煤細度

多數燃煤電廠改善經驗中顯示,至少有75-80%的機會取決於粉煤粒徑大小。因此,燃燒的優化應從改善粉煤細度和磨煤機性能開始(Wiatros-Motyka,2016)。 鍋爐燃燒對煤粉細度具一定要求,依鍋爐設計條件設置有磨煤機將煤炭研磨成符合 規格的燃料粉煤。磨煤機及其功能如圖3,根據特定的哈氏可磨性指數(Hardgrove Grindability Index, HGI)、原始煤料尺寸、含水量和所需的粒度水平設計,因此,煤 粉碎機的性能會隨著燃料的變化而變化。其中,粒度和硬度對煤粉碎機的性能影響更 大。因此調整煤粉碎機,以確保提供所需粒度的燃料,非常重要。

然而,因為設備使用年限較久使研磨煤粉過篩值(200 MESH)無法達到設計值 85%以上(台化公司,2022),且因煤炭多元化使煤磨機處理量低於設計值,則需透過 維護保養提升性能來改善,當成燃燒優化的起點。

研磨:以內部機構磨輪與磨盤間的壓碎、輾碎、研磨等功能將煤炭研磨成煤粉。
乾燥:藉由通入熱風,將研磨完成的煤粉吹送至鍋爐,同時乾燥、去除水份並提高輸送順暢,避免阻塞。
篩選煤粉細度:藉由內部分離器篩選煤粉達要求細度,並將未達要求細度的煤粉篩除及循環再研磨。

排渣:煤中異物(如鐵塊、石塊、木塊等)排除。

圖3 重力式磨煤機及其功能(台化公司,2022)

2.4 燃燒優化

煤電廠控制系統不斷演進,以滿足對高效靈活發電和低排放日益增長的需求。為 了優化燃燒過程,需要使用更多在線(連續自動)監測技術,並用更先進的演算法以 處理多變量系統,以替換現行標準控制環。國際能源署(International Energy Agency, IEA) 乾淨煤炭中心(Clean Coal Center, CCC)於 CCC/251 報告(Lockwood, 2015)中 彙整先進演算法及監測技術。另於 CCC/263 報告 (Wiatros-Motyka, 2016) 中說明粉 煤及生質能燃燒優化的作法。簡言之,燃燒優化中使用的監測器分為空燃比參數及燃 燒效果驗證 2 項。在空燃比參數包括煤粉細度、煤粉流率、空氣流率;燃燒效果驗證 包括煙道氣 O,、CO、FEGT 和飛灰 LOI 等。

國內早期因應煤源變更有燃燒優化的成功經驗(陳等,2005,李,2005,Wan et al.,2008)。台電公司面臨粉煤細度線上監測及設備維護均不易長久維持,取樣到實驗 室做粉煤細度分析雖可供事後比對探討,無法長期提供作為動態及時運轉調整的數據 來源,且為了降低購煤成本,購買煤炭的來源多元化,無法固定單一煤種。其次為了 降低空污排放(PM、SO_x、NO_x3項需合併綜合考量)、灰量、及控制熱值範圍等種種 因素,會進行不同煤種的混煤燃燒。因此若實際運轉狀況偏離原先的條件,會使優化 設定的效果打了折扣。

除了因應上開因素外,又為了提高燃燒效率,降低爐膛結渣等原因持續引進燃燒 優化技術(楊,2010,賴及林,2012,楊,2015,楊,2016,楊,2017),希望能結合 台電公司目前已有之模擬系統進行優化。然而,國內空燃比參數監測設備使用並不普 遍,業者表示有下列原因:1.早期煤炭穩定於歲修後調整即可,2.成本太高,3.容 易阻塞難維護等。在燃燒效果驗證設備使用也不普遍,包含下列因素:1.僅有一維之 CO跟O2 監測不敷使用,2.雖有FEGT 但無二維溫度場不敷使用,3.成本太高,4.過 去管制相對寬鬆需要不高。

2.5 AI 引進步驟

AI 具有監控並提供電廠的管理參數數據之潛力,隨著淨零炭排政策持續發展, AI 可以在平衡需求和發電方面發揮作用,達到節省能源之目的。(Renshaw, 2023)

本研究將主成分分析(Principal Component Analysis, PCA)和線性迴歸模型結 合用於燃燒優化的目標,包含以下步驟:數據收集,預處理,PCA,線性迴歸模型建立, 模型訓練和評估,燃燒過程優化,最後希望可以結合 AI 自動控制,如圖 4。最終目標 是通過持續監測和模型預測來實現燃燒過程的自動優化,從而提高燃燒效率。

圖 4 AI 引進步驟

2.5.1 PCA 數據處理

PCA 是一種用於資料降維和特徵提取的統計方法。它的主要目標是減少資料集的 維度,同時保留盡可能多的訊息。PCA 透過線性變換將原始特徵空間轉換為新的特徵 空間,其中新的特徵稱為主成分。這些主成分是原始特徵的線性組合,它們按照解釋 資料變異數的大小排列,以確保前幾個主成分包含了資料中的大部分變異性。

以下為本研究執行 PCA 之主要步骤:

- 標準化數據:首先計算各參數之標準差,並且刪除數據偏離大於3個標準差之離群值, 再將各參數標準化,以確保每個特徵的均值為0,變異數為1。這有助於消除不同特徵 之間的尺度差異。
- 計算共變異數矩陣: PCA 基於特徵之間的共變異數來識別主成分。共變異數矩陣度量 不同特徵之間的相關性。
- 計算特徵值和特徵向量: 透過對共變異數矩陣進行特徵值分解,可以得到一組特徵值 和相應的特徵向量。特徵向量代表主成分的方向,而特徵值表示資料中沿著這些方向 的變化量。

 選擇主成分: 特徵值表示主成分的重要性。本研究選擇前3個特徵值最大的特徵向量 作為主成分。這些主成分能夠解釋資料中大部分的變異性。

5. 投影資料: 最後,將資料投影到所選的主成分上,獲得新的特徵向量。

PCA的應用包括資料降維、視覺化、去噪、特徵選擇、模式識別等。透過降低資料維度,PCA可以幫助減少計算複雜度、去除雜訊、提高模型的訓練效率,並有助於更好地理解資料中的模式和結構。

2.5.2 建立 AI 模型

本研究採用多變項線性迴歸(Multivariable Linear Regression)建立 AI 模型,多 變項線性迴歸是一種統計學和機器學習中常用的模型,用於探索和建模變數之間的關 係。這個模型特別適用於預測一個或多個連續型目標變數(也稱為響應變數)如房價、 銷售數量等,

其核心思想基於線性關係的假設,試圖找到一個線性函數,以最好地描述自變數 (或特徵)和響應變數之間的關係。這個線性函數通常表示為:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$

其中,Y是響應變數,X₁、X₂…X_p是自變數, β_0 、 β_1 、 β_2 … β_p 是模型的係數, 它們代表了自變數對響應變數的影響, ϵ 是誤差項。多變項線性迴歸的目標是找到最 佳的係數 β 值,以使模型的預測與實際觀測值之間的誤差(即誤差項 ϵ)最小。這通 常是通過最小化均方誤差(MMSE)實現。

2.5.3 AI 高階控制器

透過 AI 預測製程變化趨勢,計算最佳操作策略,實現穩定且節能的自動化控制 模式,達到節約能源和確保操作穩定的目標。不僅提高燃燒效率,同時降低人工操作 需求,減少操作失誤風險。

三、研究方法

3.1 最佳化操作方法

量測是深入瞭解問題的首要步驟,它為我們提供可靠且準確的數據,這些數據在 控制策略的制定和實施中起著關鍵作用。透過持續的量測和監控,有助於控制空燃比 等操作參數,並不斷精進控制策略以達到優化之目的。但以往之調控方式,除了仰賴 老師傅之目測火焰溫度及均勻度外,還有試誤時間成本的問題,若可透過監測數據調 整瞭解燃燒狀況,並且透過人工智慧預測燃燒效率,即可大幅降低工廠燃燒優化之學 習曲線。

本研究提出最佳化操作方法(如圖5),於鍋爐系統加裝各式感測器後,透過空燃比或預測模型等,進階控制策略,再根據各項指標優化鍋爐燃燒系統。

圖 5 最佳化操作方法

3.2 二維溫度分布映射技術

傳統 FEGT 單點監測無法得知平均溫度及其在鍋爐橫截面上的空間分佈。高級熱 測技術,如本研究使用的 EUtech 公司 (EUtech, 2015)的 EUflame 系統,提供了一種 準確高效的 FEGT 監測方式:通過結合安裝在鍋爐周圍的多個紅外線 (IR) 熱測儀的信 號,可以重建 FEGT 的二維場,如圖 6。IR 熱測儀利用燃燒煙道氣中 CO₂ 的高濃度, 其強烈的紅外輻射可以通過 Stefan-Boltzmann 定律與溫度相關聯,提供整個爐膛橫截 面的完整溫度概況 (Lockwood, 2015)。

Blondeau 等 (Blondeau et al., 2020) 以 EUflame 展示了對 1 台 1,500 MW 鍋爐進 行的測量活動的結果,該活動使用了 1 套包含 9 個紅外線熱測儀的系統。通過對燃燒 空氣分配的在線調整,使 FEGT 峰值教調整前降低了約 100°C,並且讓火焰重新居中。

圖 6 二維溫度分布映射技術

3.3 研究對象

本鍋爐系統中4台磨煤機及8支各燃燒器之示意圖如圖7所示,說明如下:

3.3.1 磨煤機 (Mills)

磨煤機的主要功能是將煤炭磨碎並將其輸送到鍋爐的燃燒器,案例廠的鍋爐前側 有4台磨煤機,為鍋爐提供煤粉。每台磨機都有2根粉煤管,將煤輸送到鍋爐前牆一 層的燃燒器。

3.3.2 燃燒器 (Burners)

鍋爐配置之燃燒器位於前牆上,共有8支燃燒器,其主要優勢在於均匀的熱能分佈,有助於鍋爐的高效運行。每支燃燒器負責混合煤粉和空氣,然後在其內進行燃燒, 形成鍋爐的主要燃燒區域。共同的風箱為8支各燃燒器提供所需的空氣,確保每支燃 燒器都能獲得相同的風量和壓力,實現均匀燃燒。

圖 7 磨煤機 & 燃燒器示意圖

3.3.3 風道和風量控制

鍋爐配有1台FD風車、1台ID風車和4台PA風車。前者為風箱提供助燃空氣。 在磨煤機中,熱空氣與冷風混合。每個磨煤機還配有密封空氣。

測量每台磨機的每個一次風體積流量。測量燃燒空氣流量(即二次、三次和 OFA 空氣)的總量。

OFA 從主風箱供應,並僅通過專用氣箱從爐鼻下方的後牆送入爐子。測量 OFA 體積流量,並可根據 NO, 排放水準(即空氣分級)使用自動閥進行控制。

3.3.4 感测器佈置

燃燒分析的一部分是爐膛出口煙氣溫度(FEGT)及其在鍋爐水平橫截面上的分佈。因此,使用帶有八個感測器的 EUflame 2D 系統(如圖 8 左)來測量鍋爐內部水 平橫截面(如圖 8 右)的溫度並計算溫度分佈。

二維煙溫測量儀安裝位置

圖 8 溫度感測器佈置配置圖(左: EUflame 2D 系統;右:鍋爐)

四、結果與討論

4.1 PCA 主成分分析

本研究參數共計有47項,包含8支感測器的溫度、各磨煤機的一次風量、二 次風量、各磨煤機的燃料流量、轉速等,數量之多,挑選其中30個可控參數,利用 PCA進行數據降維。執行結果如圖9。

圖 9 主成分解釋數據變化之總體變異數累積圖

透過主成分分析建立 29 組主成份,選取累積總體變異數 >95% 之前 8 項主成份 (PC1~PC8),可以解釋資料變化的 95.29%,顯示這 8 項主成份成功地保留了大部分 數據中的訊息。本研究將各主成分關鍵參數列出,排除相關係數小於 0.2 之參數, 整理如表 1,從 PC1~PC8 中挑選權重最高、涵蓋度最高之 22 項參數執行多變項線 性迴歸模型之建置,上述參數包含:1.鍋爐負載、2.總燃料流量測量、3.A-mill 磨 煤機燃料流量、4.B-mill 磨煤機燃料流量、5.C-mill 磨煤機燃料流量、6.D-mill 磨 煤機燃料流量、7.A-mill 粉煤分離器轉速、8.B-mill 粉煤分離器轉速、9.C-mill 粉 煤分離器轉速、10.D-mill 粉煤分離器轉速、11.油料供料管中的壓力、12.A 磨煤機 入口一次風壓、13.B 磨煤機入口一次風壓、14.C 磨煤機入口一次風壓、15.一次風 總量、16.二次風流量總計、17.火上風量、18.FDF 出口壓力、19.IDF 入口壓力、 20.A-FurnacePressure、21.B-FurnacePressure、22.總風量。

主成份貢獻度															
PC-1:55.19	%	PC-2:15.6%	6	PC-3: 12.6%	6	PC-4:4.8%	5	PC-5 : 2.3%	ó	PC-6:2.1%	5	PC-7:1.5%	Ď	PC-8:1.2%	5
参数	相關	\$ X	相關	争款	相關	多数	相關	多款	相關	# #	相關	李赦	相關	多批	相關
總風量	0.24	D-mill粉煤分離器構造	0.37	C-mill一次風量	0.47	A-Furnace Pressure	0.71	氧水消耗量(L/H)	0.50	A-Furnace Pressure	0.44	B-Furnace Pressure	0.55	油料供料管中的壓力	0.82
一次風總量	0.24	B-mill粉煤分離器構速	0.33	B-mill一次風量	0.46	B-Furnace Pressure	0.69	D-mill一次風量	0.32	B-Furnace Pressure	0.36	A-Furnace Pressure	0.48	氨水消耗量	0.23
B-mill 氣源管路壓力	0.24	C-mill粉煤分糠器棒速	0.32	A-mill一次風量	0.45			鍋爐負載	0.31	D-mill一次風量	0.26	氨水消耗量	0.37	B-mill一次風量	0.21
C-mill 氣源管路壓力	0.23	油料供料管中的屋力	0.30	D-mill一次風量	0.36			火上風量	0.31	A-mill一次風量	0.26				
D-mill磨煤機燃料流量	0.22	A-mill粉煤分離器轉速	0.30	油料供料管中的屋力	0.27			A-mill一次風量	0.29						
C-mill磨煤機燃料流量	0.22	總燃料流量測量	0.27	D-mill氧源管路壓力	0.21			A-Furnace Pressure	0.25						
A-mill 氣源管路壓力	0.22	火上風量	0.23					A-mill 氣源管路屋力	0.21						
二次風流量總計	0.22														
A-mill磨煤模燃料流量	0.22														
B-mill磨煤機燃料流量	0.22														
D-mill 氣源管路壓力	0.21														
IDF入口壓力	0.21														
錫爐負載	0.21														
FDF出口壓力	0.21														
A-Furnace Pressure	0.21														
B-Furnace Pressure	0.20														

表1 主成分中各參數之特徵權重

4.2 多變項線性迴歸模型

本研究之目標變數擬使用燃燒相關之變數,如:CO、未燃炭。因未燃炭數據量 較少,故使用尾氣 CO 濃度作為目標變數,自變數則使用過 PCA 篩選出來之上述 22 項參數,將目標變數及自變數進行標準化,並將數據依 7:3 隨機拆分為訓練集和測 試集,接著使用訓練集(總數據的 70%),訓練多變項線性迴歸模型,再使用訓練好的 多變項線性迴歸模型進行訓練集和測試集的預測。為了確保模型之正確且有效性,本 研究應用均方誤差(MSE)、均方根誤差(RMSE)、平均絕對誤差(MAE)合格標 準對於模型性能進行評估,預測結果如表 2,以權重最高(55.1%)之 PC1 中取相關性 最高之總風量及一次風量為例,主要參數之預測結果(總風量及一次風量為例)如圖 10~11。

圖 10~11 為多變項線性迴歸模型的預測結果,以 CO 濃度為目標變數,總風量及 一次風總量為自變數。圖中的紅色點表示實際觀測值,綠色點表示模型預測值。可以 看出,預測值與觀測值大致可被直線繪製的區域涵蓋,表示模型能夠準確地捕捉到自 變數和目標變數之間的線性關係。

模型評估指標	訓練集	測試集	合格標準
模型準確度	80.74%	79.99%	-
均方誤差(MSE)	0.19	0.21	0.30
均方根誤差 (RMSE)	0.44	0.45	0.55
平均絕對誤差 (MAE)	0.33	0.33	0.50

表 2 迴歸模型之訓練結果

訓練集(總風量)

測試集(總風量)

圖 10 迴歸模型之訓練結果 (CO 濃度 vs 總風量)

訓練集(一次風總量)

測試集(一次風總量)

圖 11 迴歸模型之訓練結果 (CO 濃度 vs 一次風總量)

本研究設定了合格標準,以判斷模型是否達到預期的水準。表2顯示了訓練集和 測試集的模型評估指標,可以看出,本研究建立的模型在訓練集和測試集上都滿足了 合格標準,且訓練集和測試集的指標相差不大,表示模型沒有過度擬合或欠擬合的問 題,訓練後的多變項線性迴歸模型對於訓練集有 80.74% 的準確度、用以預測測試集 也有 79.99% 準確度,顯示本研究建立的多變項線性迴歸模型在訓練集和測試集上均 具有良好的精準度。

需注意的是本試驗是使用固定煤,假設 HGI 相同,所需通過 200mesh 的 85% 通過率之磨煤機轉速相同,未來若 HGI 改變時,需重新建構學習曲線。

建模完成後,可以透過操作數據以預測 CO 濃度,藉以作為燃燒優劣之指標,再 於固定煤炭情況下,調整操作參數如磨煤機運轉、燃燒器風箱壓力、風門等以調整 粉煤粒徑及空燃比設定,達到燃燒優化之目的,最後利用 CO 與未燃炭之關係式,將 CO 換算為未燃炭,驗證未燃炭之改善效益。

4.3 燃燒調整過程

本研究於112年5月29日至6月2日於案例廠進行燃燒調整,該鍋爐容量為500噸/小時,研究期間並非滿載操作,負載約介於230噸/小時~320噸/小時,故原設計之磨煤量餘裕仍多,本研究在固定煤炭種類為印尼煤之情況下,調整操作參數。

4.3.1 調整前

爐膛火焰中心往鍋爐後牆靠近,火焰中心位置偏向於區域10,容易噴濺在後牆 上,火焰可能過長致爐壁上有結渣情形,造成水牆管熱交換不均勻情形,如圖12。

圖 12 調整前爐膛溫度分布圖

4.3.2 調整後

調整燃燒器二次風門及磨煤機參數後,火焰中心往爐膛中心接近,現場觀察後爐 水牆管上明顯無火焰噴濺情形,如圖13。優化後,火焰中心位置回到區域9及區域 10 中間,火焰中心雖有稍微偏右,現場觀察火焰燃燒情形佳及火焰無噴濺至後爐水牆 管。優化後,各磨煤機(A ~ D mill)轉速皆提高,增速介於52.4~98.0 rpm,如表3。 爐膛溫度除了 zone2 ~ zone4 的 FEGT 有降低以外,其餘區域溫度皆上升,如表4。

圖 13 調整後爐膛溫度分布圖

表3 各磨煤機轉速調整前後差異

區域	調整前 (rpm)	調整後 (rpm)	增速 (rpm)
A mill 磨煤機轉速	609.0	661.4	52.4
B mill 磨煤機轉速	568.9	666.9	98.0
C mill 磨煤機轉速	564.1	660.7	96.6
D mill 磨煤機轉速	561.2	658.7	97.5

區域	調整前(°C)	調整後(°C)	升溫/降溫(°C)
zonel 溫度	885.0	892.7	7.7
zone2 溫度	914.7	892.7	-22.0
zone3 溫度	913.2	911.4	-1.8
zone4 溫度	883.6	880.5	-3.1
zone5 溫度	892.7	910.7	18.0
zone6 溫度	923.0	942.5	19.5
zone7 溫度	925.8	949.9	24.2
zone8 溫度	895.6	919.7	24.1
zone9 溫度	903.5	905.9	2.4
zone10 溫度	913.7	935.3	21.5

表4 爐膛各區域 (zone1~10) 調整前後溫度差異

4.4 燃燒優化結果

燃燒優化結果,未燃炭由 4.9% 降至 0.86%(如圖 14),熱效率提升 1.93%,CO 濃度由 6.83 ppm 降至 6.3 ppm。值得探討的是,臚膛中心(Zone10)的演算溫度由調 整前 913.7 °C提高至調整後 935.3 °C,但 SCR 入口 NO_x 濃度未有顯著增加,由 184.3 ppm 升至 187.8 ppm,推測在燃煤鍋爐中,NO_x主要由 Fuel NO_x(燃料氦氧化物)主導, 約占總 NO_x 的 75%(ECHNOLO, 1996)。Fuel NO_x的生成機制涉及到燃燒過程中, 燃料中的揮發分(VM)中的氦原子與氧氣的反應,這種反應通常發生在爐鼻附近的 一次空氣(PA)燃燒區。因為調整後的煤粉更細,導致 PA 的比例降低(氧氣減少), 進而降低 Fuel NO_x 的生成。

圖 14 調整後 LOI 改善情形

五、結論與建議

本研究以前牆式粉煤汽電共生鍋爐 (500 公噸 / 小時) 及低 NO_x 燃燒器為對象,透 過 PCA 篩選關鍵可控參數後,透過多變項線性迴歸模型建模,以預測 CO 濃度,藉以 作為燃燒優劣之指標,再於固定煤炭情況下,調整操作參數如磨煤機運轉、燃燒器風 箱壓力、風門等以調整粉煤粒徑及空燃比設定。結果顯示,燃燒優化結果顯示未燃炭 由 4.9% 降至 0.86%,熱效率提升 1.93%, CO 濃度由 6.83 ppm 降至 6.3 ppm。值得注 意的是,臚膛中心 (Zone10) 的溫度由調整前 913.7 °C 升高至 935.3 °C,但 SCR 入口 NO_x 濃度僅由 184.3 ppm 上升至 187.8 ppm,推測燃煤鍋爐中 NO_x 主要由 Fuel NO_x 主 導,約占總 NO_x 的 75%。Fuel NO_x 的生成機制涉及到燃燒過程中,燃料中的揮發分 中的氦原子與氧氣的反應,這種反應通常發生在爐鼻附近的 PA 燃燒區。調整後的更 細煤粉導致 PA 比例降低,進而降低 Fuel NO_x 生成。

本研究已完成 AI 引進步驟之前兩步驟 (PCA 數據處理及建立 AI 模型),證實透 過監測和控制燃料和空氣流量分佈可以優化燃燒過程,在不影響 NO_x下,降低未燃 炭及提高熱效率。建議企業因煤源多樣化等需求導入高燃料比(固定炭)燃料,而有 LOI 增加之潛勢,可透過本研究成果協助將 LOI 降低至 6% 以下,促進飛灰於循環經 濟利用的管道,但要實現第三步驟-AI 高階控制器達到穩定且自動化的動態控制模式 仍需要持續提供模型數據以優化準確度,並導入高階控制器的技術。未來仍需持續突 破技術以達成我們的最終願景。

參考文獻

- ECHNOLO, T.(1996), Reducing Emissions of Nitrogen Oxides via Low-NO_x Burner Technologies.
- EPRI (2001), Coal Ash Carbon Removal Technologies. Palo Alto, CA, USA, Electric Power Research Institute (2001)
- Dong N (2010), Reducing carbon in ash. CCC/167, London, UK, IEA Clean Coal Centre (2010)
- 台化公司工務部龍德公用廠(2018),視覺污染及清潔排放改善報告,台塑企業2018 年9月號
- Widmer N, Marquez A (2012), Zonal combustion optimization for coal-fired boilers.Presentation at: McIlvaine hot topic hour webinar, 27 Sep 2012, pp 28 (2012)
- Lockwood, T.(2015), Advanced sensors and smart controls for coal-fired power plant controls for coal-fired power plant-CCC/251, IEA Clean Coal Centre, ISBN 978-929029-573-0
- 台化公司新港公用廠 (2022),新港公用廠 SK3 磨煤機更新改善,台塑企業 2022 年 3 月號
- Wiatros-Motyk, M.(2016), Optimising fuel flow in pulverised coal and biomass-fired boilers-CCC/263, IEA Clean Coal Centre, ISBN 978-92-9029-586-0
- POWER. (2019, September 3). Combustion Optimization to Improve Heat Rate and

Lower NO_x. News & Technology for the Global Energy Industry. Retrieved from https://www.powermag.com/author/aiwpadmin/.

- EUtech (2015) EUtech Scientific Engineering Power generation solutions. Aachen, Germany, EUtech Scientific Engineering. 46 pp (2015)
- J. Blondeau, J. Van den Auweele, S. Alimuddin, F. Binder, F. Turoni(2020), Online adjustment of Furnace Exit Gas Temperature field using advanced infrared pyrometry: Case study of a 1500 MWth utility boiler,Case Studies in Thermal Engineering,Volume 21,2020,100649,ISSN 2214-157X,

楊泰然 (2010), 燃煤鍋爐節能減碳之粉煤平衡技術, 台灣電力公司。

- 賴如椿、林春景 (2012),參加美國 2011 Power-Gen 全球電力展覽研討會及參訪 Escalante 發電廠,台灣電力公司。
- 楊泰然 (2015), 燃煤鍋爐效能優化 (模擬測試評估)技術, 台灣電力公司。

楊泰然 (2016), 燃煤鍋爐煤質優化評估技術, 台灣電力公司。

- 楊泰然 (2017), 燃煤鍋爐燃燒診斷技術及氣送煤流實驗設計, 台灣電力公司。
- Renshaw, J. (2023, October 18). AI Revolution Could Drive Clean Energy Future. News & Technology for the Global Energy Industry. Retrieved from https://www.powermag. com/author/jeremy-renshaw/.
- 陳志廉、林全聖、簡有益、朱允中、鍾文宗、徐錦榮、余啟瑞、陳錦隆、邱鴻源、陳 景林,楊泰然(2005),降低林一機飛灰中未燃炭之對策及方法研究,台電工程月刊。

李天財 (2005), 燃煤鍋爐因應煤質改變之燃燒經驗介紹, 燃燒季刊。

Hou-Peng Wan, Chyh-Sen Yang, B.R. Adams, S.L. (2008) Chen, Controlling LOI from coal reburning in a coal-fired boiler, Fuel, Volume 87, Issue 3.